Estimation of surface tension of poly(vinylidene fluoride-*co*-hexafluoro acetone) by corresponding states theory

Y. Kano

Research Laboratory, LINTEC Corporation, 5-14-42, Nishiki-cho, Warabi-shi, Saitama 335, Japan

and S. Kawahara and S. Akiyama*

Laboratory of Chemistry, Faculty of General Education, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183, Japan (Received 26 December 1991; revised 20 February 1992)

The theoretical surface tensions γ_s^T of poly(vinylidene fluoride-*co*-hexafluoro acetone) (hexafluoro acetone content: 6.5, 8.3, 10.4 mol%) were calculated according to Prigogine's corresponding states theory, as has already been extended to surfaces by Patterson and co-workers. The resulting γ_s^T was nearly consistent with the experimental surface tension γ_s^C evaluated by a log(1 + cos θ) versus log(γ_L) plot based on the contact angle method.

(Keywords: poly(vinylidene fluoride-co-hexafluoro acetone); surface tension; corresponding states theory; contact angle)

Introduction

Surface tensions of various polymers have been obtained by the contact angle method¹⁻³. In our previous study⁴, we measured the contact angles of dispersion, polar and hydrogen bonding liquids on the surface of poly (vinylidene fluoride-*co*-hexafluoro acetone) [P(VDF-HFA)]. Then, the critical surface tensions $\gamma_{\rm C}$ of P(VDF-HFA)]. Then, the critical surface tensions $\gamma_{\rm L}$, $(1 + \cos \theta)$ versus $1/\gamma_{\rm L}^{0.5}$ and $\log(1 + \cos \theta)$ versus $\log(\gamma_{\rm L})$ plots. The $\gamma_{\rm C}$ values estimated with the polar liquids were larger than those with the dispersion and hydrogen bonding liquids. It was suggested that the orientation and rearrangement of P(VDF-HFA) occurred and the $\cos \theta$ versus $\gamma_{\rm L}$ plot resulted in essentially a concave curve.

Siow and Patterson⁵ pointed out that the theoretical surface tension of a polymer γ_s^T could be predicted with Prigogine's corresponding states theory by the following equation:

$$\tilde{\gamma}_{\rm S} = \gamma_{\rm S}^{\rm T} / (k^{1/3} P^{*2/3} T^{*1/3}) \tag{1}$$

$$\tilde{\gamma}_{\rm S} \tilde{V}^{5/3} = 0.29 - (1 - \tilde{V}^{-1/3}) \times \ln[(\tilde{V}^{1/3} - 0.5)/(\tilde{V}^{1/3} - 1)]$$
(2)

where
$$P^*$$
 and T^* are the reference parameters for
pressure and temperature, $\tilde{\gamma}_s$ and \tilde{V} are the reduced
surface tension and reduced volume and k is the

surface tension and reduced volume and k is the Boltzmann constant. In this study, the relationship between γ_s^T calculated using equations (1) and (2) and the experimental surface tensions γ_s^C obtained by the log(1 + cos θ) versus log(γ_L) plot for P(VDF-HFA) was examined.

Experimental

The polymer samples used were P(VDF-HFA) with HFA contents of 6.5 ($M_n = 30\,000$, $M_w/M_n = 4.23$), 8.3

 $(M_n = 11\,600, M_w/M_n = 4.94)$ and 10.4 mol% $(M_n = 35\,000, M_w/M_n = 4.63)$.

The corresponding states parameters were calculated with the thermal expansion coefficient α and the thermal pressure coefficient κ , which were estimated by dilatometric measurements⁶ and the equation $\kappa = \delta^2/T$ [where δ is the solubility parameter of P(VDF-HFA)], respectively. The dilatometric measurements obeyed Bekkedahl's method⁷. For dilatometry, a Pyrex glass dilatometer (length ~ 50 cm, thickness ~ 3 mm, inside diameter ~ 2 mm) containing mercury was used. The specific volumes V_{SP} of P(VDF-HFA) at various temperatures were calculated by the following equations:

$$V_{\rm SP} = \frac{\left[V_{\rm t}(T) + \Delta V_{\rm t} - V_{\rm tHg}\right]}{m_{\rm p}}$$

$$V_{\rm t}(T) = V(25^{\circ}{\rm C}) + S[N(T) + \Delta N - N(25)]$$

$$\Delta V_{\rm t} = V(25) (T - 25) \times 10^{-5}$$

$$V_{\rm tHg} = m_{\rm Hg} (0.073554 + 0.0000134t)$$

$$t = T + (T - T_{\rm r})(T - T_{\rm l}) \times 0.00017$$

$$\Delta N = 0.00017 (T - T_{\rm r})(N - N_{\rm b})$$

where V(25) is the specific volume at 25°C, N(25) is the position of mercury at 25°C, N_b is the liquid temperature in an oil bath, N(T) is the position of mercury at a temperature T, T_r is the room temperature, T_1 is the liquid surface temperature before heating, S is the cross-section of the capillary, and m_p and m_{Hg} are the weights of the samples and mercury, respectively. After P(VDF-HFA) and mercury were put into the dilatometer, it was annealed for 2 h at 100°C. The dilatometer was placed in an oil bath, and the specific volumes of P(VDF-HFA) at the various temperatures (25–180°C) were measured. The heating rate was set at 2°C min⁻¹.

Results and discussion

Flory^{8,9} defined the equation of state for the polymer fluid by means of Prigogine's corresponding states

^{*}To whom correspondence should be addressed

theory¹⁰:

$$\frac{\tilde{P}\tilde{V}}{\tilde{T}} = \frac{\tilde{V}^{1/3}}{\tilde{V}^{1/3} - 1} - \frac{1}{\tilde{V}\tilde{T}}$$
(3)

where \tilde{P} , \tilde{V} and \tilde{T} are the reduced parameters of pressure, volume and temperature, respectively. The reduced parameters are evaluated using α and κ as follows:

$$\widetilde{V} = V_{\rm SP}/V^* = \left(\frac{1+T\alpha}{1+4T\alpha/3}\right)^{-3} \tag{4}$$

$$\tilde{P} = P/P^* = P/(\tilde{V}^2 T \kappa)$$
(5)

$$\tilde{T} = T/T^* = (\tilde{V}^{1/3} - 1)/\tilde{V}^{4/3}$$
(6)

where P^* , V^* and T^* are the constant reference parameters. Therefore, γ_S^T can be calculated from equations (1) and (2) using the parameters P^* , T^* and \tilde{V} which are obtained with α and κ . The slope of the V_{SP} versus temperature plot is α and κ can be estimated with δ as follows¹¹:

$$\kappa = \delta^2 / T \tag{7}$$

The relationship between $V_{\rm SP}$ and T for P(VDF-HFA) with 6.5 mol% HFA content is shown in *Figure 1*. The phase transition of P(VDF-HFA) is revealed in the range ~90-150°C. Maeda *et al.*¹² found by d.s.c. that the melting point of P(VDF-HFA) with 6.5 mol% HFA content was around 130°C. It is considered that the phase transition of P(VDF-HFA) by dilatometry corresponds to the solid-liquid phase transition. Two straight lines are drawn using the least square approximation with a correlation coefficient of >0.99 with the following equations:

$$V_{\rm SP} = 4.986 \times 10^{-4} T(^{\circ}{\rm C}) + 0.583 \ (25 - 90^{\circ}{\rm C})$$
 (8)

$$V_{\rm SP} = 5.975 \times 10^{-4} T(^{\circ}{\rm C}) + 0.594 \ (150 - 180^{\circ}{\rm C}) \tag{9}$$

The slope of V_{SP} versus T is α . The thermal pressure coefficient κ of P(VDF-HFA) can be calculated with δ which is estimated by the molar attraction constant by means of Hoy's table¹³:

$$\delta = \sum F_i / V \tag{10}$$

where F_i and V are molar attraction constant and molar volume, respectively. The structure of P(VDF-HFA) is represented by:

$$-\left(\begin{array}{c} \left[\begin{array}{c} \mathsf{F} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{F} \end{array} \right]_{m} \\ \mathsf{F} \\ \mathsf{F} \end{array} \right)_{m} \\ \left(\begin{array}{c} \mathsf{C} \\ \mathsf{F} \\ \mathsf{F} \end{array} \right)_{r} \\ \mathsf{C} \\ \mathsf{F} \\ \mathsf{F} \end{array} \right)_{r} \\ \left(\begin{array}{c} \mathsf{C} \\ \mathsf{F} \\ \mathsf{C} \\ \mathsf{F} \end{array} \right)_{r} \\ \mathsf{C} \\ \mathsf{F} \\ \mathsf{C} \\ \mathsf{F} \end{array} \right)_{r} \\ m + n = 1$$

Table 1 Values of F_i and V for VDF and HFA

where *m* and *n* are the ratios of the VDF and HFA in P(VDF-HFA), respectively. Consequently, δ of P(VDF-HFA) is calculated with the monomer ratios *m* and *n* using the following equation:

$$\delta = \delta_{\text{VDF}}^{m} \delta_{\text{HFA}}^{n} = \left[\sum F_{i(\text{VDF})} / V_{\text{VDF}}\right]^{m} \left[\sum F_{i(\text{HFA})} / V_{\text{HFA}}\right]^{n} \quad (11)$$

The F_i and V values for VDF and HFA are shown in Table 1.

In P(VDF-HFA) with 6.5 mol% HFA content, the value of δ was 5.78. The state parameters at 20°C for P(VDF-HFA) are shown in *Table 2*. The state parameters were obtained with equation (9) in the range of 150–180°C, because the liquid state was reached.

Siow and Patterson⁵ pointed out that γ_s^T was evaluated using equations (1) and (2) based on a state parameter. Stewart and Von Frankenberg¹⁴ found that a reasonable γ_s^T for several polymers could be evaluated by equations (1) and (2). On the other hand, in our previous paper⁴, we estimated γ_s^C of P(VDF-HFA) with the parameters ϕ and $\psi = 0.5 - a$ obtained by the contact angle method, where ϕ is the intercept of $(1 + \cos \theta)$ at $1/\gamma_L^{0.5} = 0$ in the $(1 + \cos \theta)$ versus $1/\gamma_L^{0.5}$ plot, ψ is the slope in the log($1 + \cos \theta$) versus 0 (γ_L) plot and a is a constant showing the deviation from the geometric mean rule. The γ_s^T calculated with the state parameters and γ_s^C evaluated by the contact angle method for P(VDF-HFA) are shown in Table 3. The γ_s^T values nearly correspond to the γ_s^C values evaluated for dispersion liquids, whereas

Figure 1 Relationship between specific volume V_{SP} and temperature for P(VDF-HFA) with 6.5 mol% HFA content

	VD	θF			H	FA	
Group	Number	F _i	Va	Group	Number	F _i	V ^a
-CH2-	1	131.5	15.85	-C- 	3	32.03	4.6
-C-	1	32.03	4.6	-F	6	41.33	10.9
-F	2	41.33	10.9	-0-	1	114.98	10.0
Sum		246.19	42.25	Sum		459.05	89.2

HFA content (mol%)	$\frac{\alpha (\times 10^4)}{(\text{deg}^{-1})}$	$V_{\rm SP}$ (cm ³ g ⁻¹)	V^* (cm ³ g ⁻¹)	$ ilde{V}$	<i>T</i> * (K)	<i>P</i> * (J cm ⁻³)
6.5	5.975	0.595	0.514	1.159	7202	187.5
8.3	7.049	0.562	0.475	1.184	6451	195.0
10.4	6.312	0.753	0.646	1.167	6936	188.8

Table 2 State parameters for P(VDF-HFA) at 20°C

Table 3 Surface tension of P(VDF-HFA) at 20°C

HFA content (mol%)	6.5	8.3	10.4
$\gamma_{\rm S}^{\rm T}$ (dyn cm ⁻¹)	21.1	19.1	20.4
γ_{s}^{c} (dyn cm ⁻¹)		_	
Dispersion	22.7	21.9	22.7
Polar	32.5	29.9	33.6
Hydrogen bonding	29.7	26.7	26.9

the γ_s^T values are smaller than the γ_s^C values obtained from polar and hydrogen bonding liquids. We consider that the orientation¹⁵ of the polar group and the rearrangement^{16,17} of the side chain in P(VDF-HFA) occurs near the polymer surface in contact with the polar and hydrogen bonding liquids. Therefore, it is predicted that the γ_{S}^{T} values are close to the γ_{S}^{C} values when orientation and rearrangement in the polymer bulk does not take place.

Conclusions

The γ_S^T of P(VDF-HFA) calculated with state parameters was close to the γ_S^C value evaluated by the contact angle method using dispersion liquids, whereas γ_{S}^{T} was smaller than γ_{S}^{C} in polar and hydrogen bonding liquids. Consequently, in polar and hydrogen bonding liquids, we assume the orientation and rearrangement have taken place in the P(VDF-HFA) bulk near the polymer surface. Further studies are required to confirm this.

Acknowledgement

The authors are grateful to the Central Glass Co. Ltd for supplying the fluoro copolymers.

References

- Fox, H. W., Zisman, W. A. J. Colloid Sci. 1950, 5, 514; 1952, 1 7, 109, 428
- 2 Girifalco, L. A. and Good, R. J. J. Phys. Chem. 1957, 61, 904; Good, R. J. and Girifalco, L. A. J. Phys. Chem. 1960, 64, 541; Good, R. J. 'Contact Angle, Wettability and Adhesion', American Chemical Society, Washington, DC, 1964, p. 99 Hata, T., Kitazaki, Y. and Saito, T. J. Adhesion 1987, 24, 177
- 3
- 4 Kano, Y. and Akiyama, S. Polymer 1992, 33, 1690
- Siow, K. W. and Patterson, D. Macromolecules 1971, 4, 26 5
- Uematsu, I. 'Jikken Kagaku Koza 8 Kobunshi Kagaku (T)', 6 Nippon Kagakukaihen, Maruzen, 1957, p. 86
- Bekkedahl, N. J. Res. Natl Bur. Std. 1949, 43, 145 7
- Flory, P. J., Orwall, R. A. and Vrij, A. J. Am. Chem. Soc. 1964, 8 86, 3507
- 9 Flory, P. J. J. Am. Chem. Soc. 1965, 87, 1833
- Prigogine, I., Bellemans, A. and Mathot, V. 'The Molecular 10 Theory of Solutions', North-Holland, Amsterdam, 1957, Ch. 16
- Mackmaster, L. P. Macromolecules 1973, 6, 760 11
- Maeda, K., Yamauchi, T. and Tsutsumi, K. Polym. J. 1990, 22, 12 681
- 13
- Hoy, K. L. J. Paint Technol. 1970, 42, 76 Stewart, C. W. and Von Frankenberg, C. A. J. Polym. Sci., A2 14 1968, 6, 1686
- Hirasawa, E. and Ishimoto, R. J. Adhesion Soc. Jpn 1982, 18, 15 247; 1985, 19, 29
- Saito, T. and Kano, Y. J. Adhesion. Soc. Jpn 1988, 24, 469 16
- 17
- Kano, Y. and Saito, T. Setchaku 1988, 32, 396 Van Krevelen, D. W. 'Properties of Polymers', 2nd Edn, 18 Elsevier, Amsterdam, 1976, p. 59