Estimation of surface tension of poly(vinylidene fluoride-co-hexafluoro acetone) by corresponding states theory

Y. Kano

Research Laboratory, LINTEC Corporation, 5-14-42, Nishiki-cho, Warabi-shi, Saitama 335. Japan

and S. Kawahara and S. Akiyama*

Laboratory of Chemistry, Faculty of General Education, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho. Fuchu-shi, Tokyo 183, Japan (Received 26 December 1991; revised 20 February 1992)

The theoretical surface tensions γ_s^T of poly (vinylidene fluoride-co-hexafluoro acetone) (hexafluoro acetone content: 6.5, 8.3, 10.4 mol%) were calculated according to Prigogine's corresponding states theory, as has already been extended to surfaces by Patterson and co-workers. The resulting γ_s^T was nearly consistent with the experimental surface tension γ_S^C evaluated by a log(1 + cos θ) *versus* $\log(\gamma_L)$ plot based on the contact angle method.

(Keywords: poly (vinylidene fluoride-co-hexafluoro acetone); surface tension; corresponding states theory; contact angle)

Introduction

Surface tensions of various polymers have been obtained by the contact angle method $1-3$. In our previous study⁴, we measured the contact angles of dispersion, polar and hydrogen bonding liquids on the surface of poly (vinylidene fluoride-co-hexafluoro acetone) [P(VDF-HFA)]. Then, the critical surface tensions γ_c of P(VDF-HFA) were estimated by $\cos \theta$ *versus* γ_L , $(1 + \cos \theta)$ *versus* $1/\gamma_L^{0.5}$ and $\log(1 + \cos \theta)$ *versus* $log(\gamma_L)$ plots. The γ_C values estimated with the polar liquids were larger than those with the dispersion and hydrogen bonding liquids. It was suggested that the orientation and rearrangement of P (VDF-HFA) occurred and the cos θ *versus* γ_L plot resulted in essentially a concave curve.

Siow and Patterson⁵ pointed out that the theoretical surface tension of a polymer γ_s^T could be predicted with Prigogine's corresponding states theory by the following equation :

$$
\tilde{\gamma}_s = \gamma_s^T / (k^{1/3} P^{*2/3} T^{*1/3}) \tag{1}
$$

$$
\tilde{\gamma}_{\rm S} \tilde{V}^{5/3} = 0.29 - (1 - \tilde{V}^{-1/3})
$$

$$
\times \ln[(\bar{V}^{1/3} - 0.5)/(\bar{V}^{1/3} - 1)] \tag{2}
$$

where P^* and T^* are the reference parameters for

pressure and temperature, $\tilde{\gamma}_s$ and V are the reduced surface tension and reduced volume and k is the Boltzmann constant. In this study, the relationship between γ_s^T calculated using equations (1) and (2) and the experimental surface tensions γ_s^c obtained by the $\log(1 + \cos \theta)$ *versus* $\log(\gamma_L)$ plot for P(VDF-HFA) was examined.

Experimental

The polymer samples used were P(VDF-HFA) with HFA contents of 6.5 ($M_n = 30000$, $M_w/M_n = 4.23$), 8.3

 $(M_n = 11600, M_w/M_n = 4.94)$ and 10.4 mol% $(M_n =$ $35\,000$, $M_w/M_p = 4.63$).

The corresponding states parameters were calculated with the thermal expansion coefficient α and the thermal pressure coefficient κ , which were estimated by dilatometric measurements⁶ and the equation $\kappa = \delta^2/T$ [where δ is the solubility parameter of P(VDF-HFA)], respectively. The dilatometric measurements obeyed Bekkedahl's method⁷. For dilatometry, a Pyrex glass dilatometer (length \sim 50 cm, thickness \sim 3 mm, inside diameter ~ 2 mm) containing mercury was used. The specific volumes V_{SP} of P(VDF-HFA) at various temperatures were calculated by the following equations :

$$
V_{\rm SP} = \frac{[V_{\rm t}(T) + \Delta V_{\rm t} - V_{\rm thg}]}{m_{\rm p}}
$$

\n
$$
V_{\rm t}(T) = V(25^{\circ}\text{C}) + S[N(T) + \Delta N - N(25)]
$$

\n
$$
\Delta V_{\rm t} = V(25)(T - 25) \times 10^{-5}
$$

\n
$$
V_{\rm tHg} = m_{\rm Hg}(0.073554 + 0.0000134t)
$$

\n
$$
t = T + (T - T_{\rm r})(T - T_{\rm l}) \times 0.00017
$$

\n
$$
\Delta N = 0.00017(T - T_{\rm r})(N - N_{\rm b})
$$

where $V(25)$ is the specific volume at 25° C, $N(25)$ is the position of mercury at 25° C, N_b is the liquid temperature in an oil bath, $N(T)$ is the position of mercury at a temperature T, T_r is the room temperature, T_1 is the liquid surface temperature before heating, S is the cross-section of the capillary, and m_p and m_{Hg} are the weights of the samples and mercury, respectively. After P(VDF-HFA) and mercury were put into the dilatometer, it was annealed for 2 h at 100°C. The dilatometer was placed in an oil bath, and the specific volumes of P (VDF-HFA) at the various temperatures (25-180°C) were measured. The heating rate was set at 2° C min⁻¹.

Results and discussion

Flory^{8,9} defined the equation of state for the polymer fluid by means of Prigogine's corresponding states

^{*}To whom correspondence should be addressed

theory¹⁰:

$$
\frac{\widetilde{P}\widetilde{V}}{\widetilde{T}} = \frac{\widetilde{V}^{1/3}}{\widetilde{V}^{1/3} - 1} - \frac{1}{\widetilde{V}\widetilde{T}} \tag{3}
$$

where \tilde{P} , \tilde{V} and \tilde{T} are the reduced parameters of pressure, volume and temperature, respectively. The reduced parameters are evaluated using α and κ as follows:

$$
\widetilde{V} = V_{\rm SP}/V^* = \left(\frac{1+T\alpha}{1+4T\alpha/3}\right)^{-3} \tag{4}
$$

$$
\tilde{P} = P/P^* = P/(\tilde{V}^2 T \kappa)
$$
 (5)

$$
\tilde{T} = T/T^* = (\tilde{V}^{1/3} - 1)/\tilde{V}^{4/3}
$$
 (6)

where P^* , V^* and T^* are the constant reference parameters. Therefore, γ_S^1 can be calculated from equations (1) and (2) using the parameters P^* , T^* and \tilde{V} which are obtained with α and κ . The slope of the V_{SP} *versus* temperature plot is α and κ can be estimated with δ as follows¹¹:

$$
\kappa = \delta^2 / T \tag{7}
$$

The relationship between V_{SP} and T for $P(VDF-HFA)$ with 6.5 mol% HFA content is shown in *Figure 1*. The phase transition of P (VDF-HFA) is revealed in the range \sim 90-150°C. Maeda *et al.*¹² found by d.s.c. that the melting point of P(VDF-HFA) with 6.5 mol% HFA content was around 130°C. It is considered that the phase transition of P(VDF-HFA) by dilatometry corresponds to the solid-liquid phase transition. Two straight lines are drawn using the least square approximation with a correlation coefficient of >0.99 with the following equations :

$$
V_{\rm SP} = 4.986 \times 10^{-4} T({\rm ^{\circ}C}) + 0.583 \ (25-90{\rm ^{\circ}C}) \qquad (8)
$$

$$
V_{\rm SP} = 5.975 \times 10^{-4} T({}^{\circ}\rm C) + 0.594 \ (150-180^{\circ}\rm C) \ (9)
$$

The slope of V_{SP} versus T is α . The thermal pressure coefficient κ of \tilde{P} (VDF-HFA) can be calculated with δ which is estimated by the molar attraction constant by means of Hoy's table¹³:

$$
\delta = \sum F_i / V \tag{10}
$$

where F_i and V are molar attraction constant and molar volume, respectively. The structure of $P(VDF-HFA)$ is represented by :

$$
\begin{array}{ccc}\n & \uparrow & \uparrow & \uparrow \\
\left\{\begin{array}{c}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\end{array}\right\}^{\text{CF}_{3}} & \downarrow & \downarrow & \downarrow \\
m + n = 1\n\end{array}
$$

Table 1 Values of F_i and V for VDF and HFA

where m and n are the ratios of the VDF and HFA in $P(VDF-HFA)$, respectively. Consequently, δ of $P(VDF-P)$ HFA) is calculated with the monomer ratios m and n using the following equation:

$$
\delta = \delta_{\text{VDF}}^{\text{m}} \delta_{\text{HFA}}^{\text{n}} = \left[\sum F_{i(\text{VDF})} / V_{\text{VDF}} \right]^{m} \left[\sum F_{i(\text{HFA})} / V_{\text{HFA}} \right]^{n} \quad (11)
$$

The F_i and V values for VDF and HFA are shown in *Table 1.*

In P(VDF-HFA) with 6.5 mol% HFA content, the value of δ was 5.78. The state parameters at 20°C for P(VDF-HFA) are shown in *Table 2.* The state parameters were obtained with equation (9) in the range of 150-180°C, because the liquid state was reached.

Siow and Patterson⁵ pointed out that γ_S^T was evaluated using equations (1) and (2) based on a state parameter. Stewart and Von Frankenberg¹⁴ found that a reasonable γ_s^T for several polymers could be evaluated by equations (1) and (2) . On the other hand, in our previous paper⁴, we estimated γ_s^C of P(VDF-HFA) with the parameters ϕ and $\psi = 0.5 - a$ obtained by the contact angle method, where ϕ is the intercept of $(1 + \cos \theta)$ at $1/\gamma_L^{0.5} = 0$ in the $(1 + \cos \theta)$ *versus* $1/\gamma_L^{0.5}$ plot, ψ is the slope in the $\log(1 + \cos \theta)$ *versus* $\log(\gamma_L)$ plot and a is a constant showing the deviation from the geometric mean rule. The $\gamma_{\rm S}^{\rm T}$ calculated with the state parameters and $\gamma_{\rm S}^{\rm C}$ evaluated by the contact angle method for P(VDF-HFA) are shown in *Table 3*. The γ_s^T values nearly correspond to the γ_s^c values evaluated for dispersion liquids, whereas

Figure 1 Relationship between specific volume V_{SP} and temperature for P(VDF-HFA) with 6.5 mol% HFA content

Table 2 State parameters for P(VDF-HFA) at 20°C

Table 3 Surface tension of P(VDF-HFA) at 20°C

HFA content $(mol\%$)	6.5	8.3	10.4
7^{T}_{S} (dyn cm ⁻¹)	21.1	19.1	20.4
γ_{s}^{C} (dyn cm ⁻¹) Dispersion	22.7	21.9	22.7
Polar	32.5	29.9	33.6
Hydrogen bonding	29.7	26.7	26.9

the $\gamma_{\rm s}^{\rm T}$ values are smaller than the $\gamma_{\rm s}^{\rm C}$ values obtained from polar and hydrogen bonding liquids. We consider that the orientation¹⁵ of the polar group and the rearrangement^{16,17} of the side chain in $P(\overrightarrow{VDF-HFA})$ occurs near the polymer surface in contact with the polar and hydrogen bonding liquids. Therefore, it is predicted that the γ_s^T values are close to the γ_s^C values when orientation and rearrangement in the polymer bulk does not take place.

Conclusions

The $\gamma_{\rm s}^{\rm T}$ of P(VDF-HFA) calculated with state parameters was close to the $\gamma_{\rm s}^{\rm c}$ value evaluated by the contact angle method using dispersion liquids, whereas γ_s^T was smaller than γ_s^C in polar and hydrogen bonding liquids. Consequently, in polar and hydrogen bonding liquids, we assume the orientation and rearrangement have taken place in the P(VDF-HFA) bulk near the polymer surface. Further studies are required to confirm this.

Acknowledgement

The authors are grateful to the Central Glass Co. Ltd for supplying the fluoro copolymers.

References

- 1 Fox, H. W., Zisman, *W. A. d. Colloid Sci.* 1950, 5, 514; 1952, 7, 109, 428
- 2 Girifalco, L. A. and Good, *R. J. J. Phys. Chem.* 1957, 61,904; Good, R. J. and Girifalco, L. A. d. *Phys. Chem.* 1960, 64, 541 ; Good, R. J. 'Contact Angle, Wettability and Adhesion', American Chemical Society, Washington, DC, 1964, p. 99
- 3 Hata, T., Kitazaki, Y. and Saito, *T. J. Adhesion* 1987, 24, 177
- 4 Kano, Y. and Akiyama, S. *Polymer* 1992, 33, 1690
- 5 Siow, K. W. and Patterson, D. *Macromolecules* 1971, 4, 26
- 6 Uematsu, I. 'Jikken Kagaku Koza 8 Kobunshi Kagaku (T)', Nippon Kagakukaihen, Maruzen, 1957, p. 86
-
- 7 Bekkedahl, *N. J. Res. Natl Bur. Std.* 1949, 43, 145
8 Flory, P. J., Orwall, R. A. and Vrij, A. *J. Am. Chen* 8 Flory, P. J., Orwall, R. A. and Vrij, *A. J. Am. Chem. Soc.* 1964, 86, 3507
-
- 9 Flory, *P. J. J. Am. Chem. Soc.* 1965, 87, 1833 Prigogine, I., Bellemans, A. and Mathot, V. 'The Molecular Theory of Solutions', North-Holland, Amsterdam, 1957, Ch. 16
- I 1 Mackmaster, L. P. *Macromolecules* 1973, 6, 760
- 12 Maeda, K., Yamauchi, T. and Tsutsumi, K. *Polym. J.* 1990, 22, 681
- 13 Hoy, K. L. *J. Paint Technol.* 1970, **42**, 76
14 Stewart, C. W. and Von Frankenberg, C.
- Stewart, C. W. and Von Frankenberg, C. A. J. Polym. Sci., A2 1968, 6, 1686
- 15 Hirasawa, E. and Ishimoto, *R. J. Adhesion Soc. Jpn* 1982, 18, 247; 1985, 19, 29
- 16 Saito, T. and Kano, *Y. J. Adhesion. Soc. Jpn* 1988, 24, 469
- 17 Kano, Y. and Saito, T. *Setchaku* 1988, 32, 396
- 18 Van Krevelen, D. W. 'Properties of Polymers', 2nd Edn, Elsevier, Amsterdam, 1976, p. 59